FINAL No Further Action Decision Under CERCLA Study Area 59: Bridge 526 Fort Devens Main Post Site Investigation Fort Devens, Massachusetts Prepared for: U.S. ARMY ENVIRONMENTAL CENTER ABERDEEN PROVING GROUND, MARYLAND 21010 Prepared by: ARTHUR D. LITTLE, INC. 25 Acorn Park Cambridge, Massachusetts 02140-2390 DTIC QUALITY INSPECTED & Approved for public releases Distribution Unitedited **JANUARY 1995** # **FINAL** Anthur D Little No Further Action Decision Under CERCLA Study Area 59: Bridge 526 Fort Devens Main Post Site Investigation, Fort Devens, Massachusetts Submitted to U.S. Army Environmental Center (USAEC) Aberdeen Proving Ground, Maryland Revision 1 January 1995 Arthur D. Little, Inc. Acorn Park Cambridge, Massachusetts 02140-2390 **ADL Reference 67064** DAAA15-91-D-0016/0004 # **Table of Contents** | Exe | ecutive Summary | | |------------|---|---| | | Introduction | | | 1.0 | Introduction | • | | 2.0 | Background and Physical Setting | | | | 2.1 Fort Devens Description and Land Use | | | | 2.2 Regional Geology | | | | 2.3 Regional Hydrogeology | | | | 2.4 Study Area Description and History | | | | 2.4.1 Study Area Description and Land Use | | | | 2.4.2 Related Investigations and Site History | | | | 2.4.3 Geology of Study Area SA-59 | | | | 2.4.4 Hydrogeology of Study Area SA-59 | | | 3.0 | Site Investigation | | | | 3.1 Site Investigation Report | | | | 3.2 Preliminary Risk Evaluation | | | | 3.2.1 Human Health Risk Evaluation Methodology | | | | 3.2.1.1 Soil Risk Evaluation Methodology | | | | 3.2.2 Ecological Risk Evaluation Methodology | | | | 3.2.2.1 Soil Risk Evaluation Methodology | | | | 3.2.2.2 Surface Water Risk Evaluation Methodology | | | | 3.2.2.3 Sediment Risk Evaluation Methodology | | | 4.0 | Contamination Assessment | | | | 4.1 Sediment Sampling Evaluation | | | | 4.2 Surface Water Sampling Evaluation | | | 5.0 | Preliminary Risk Evaluation | | | | 5.1 Risk Evaluation of Study Area SA-59 | | | 6.0 | Conclusions | | | 7.0 | Decision | • | | | | | | Q Λ | References | ſ | DTIC QUALITY INSPECTED S | 1 | List of Figures | S | |----|-----------------|--| | 2 | | | | 3 | Figure 2-1: | Location of Study Areas Within Fort Devens | | 4 | Figure 2-2: | SA-59 Sample Locations | | 5 | Figure 4-1: | SA-59 Analytes in Sediment | | 6 | Figure 4-2: | SA-59 Analytes in Water | | 7 | | | | 8 | | | | 9 | | • | | 10 | | | | 11 | List of Tables | | | 12 | | | | 13 | Table 4-1: | SA-59 Analytes in Sediment | | 14 | Table 4-2: | SA-59 Analytes in Surface Water | | 15 | | | | 16 | | | | | List of Asra | nyms and Abbreviations | |--------|--------------|---| | 1
2 | LIST OF ACTO | nyins and Abbieviations | | | | | | 3 | | | | 4 | | | | 5 | ABB | ABB Environmental Services, Inc. | | 6 | AWQC | Ambient Water Quality Criteria | | 7 | BAF | Bioaccumulation Factor | | 8 | BRAC | | | 9 | | Base Realignment and Closure | | 10 | CERCLA | Comprehensive Environmental Response, Compensation, and Liability | | 11 | DDE | Act | | 12 | DDE | Dichlorophenyl-dichloro-ethylene | | 13 | DOD | Department of Defense | | 14 | EMO | Environmental Management Office | | 15 | EPA | United States Environmental Protection Agency | | 16 | ER-L | Effects Range-Low | | 17 | IRDMIS | Installation Restoration Data Management Information System | | 18 | IRP | Installation Restoration Program | | 19 | MADEP | Massachusetts Department of Environmental Protection | | 20 | MCP | Massachusetts Contingency Plan | | 21 | MEP | Master Environmental Plan | | 22 | MSL | Mean Sea Level | | 23 | NOAA | National Oceanic and Atmospheric Administration | | 24 | NPL | National Priorities List | | 25 | NYSDEC | New York State Department of Environmental Conservation | | 26 | PA | Preliminary Assessment | | 27 | PAH | Polynuclear Aromatic Hydrocarbon | | 28 | PCL | Protective Contaminant Level | | 29 | PRE | Preliminary Risk Evaluation | | 30 | RCRA | Resource Conservation and Recovery Act | | 31 | RI/FS | Remedial Investigation/Feasibility Study | | 32 | SA | Study Area | | 33 | SARA | Superfund Amendments and Reauthorization Act | | 34 | SI | Site Investigation | | 35 | SVOC | Semivolatile Organic Compound | | 36 | TPHC | Total Petroleum Hydrocarbons | | 37 | TRC | Technical Review Committee | | 38 | μg/g | Micrograms Per Gram (parts per million) | | 39 | μg/L | Micrograms Per Liter (parts per billion) | | 40 | USACE | United States Army Corps of Engineers | | 41 | USAEC | United States Army Environmental Center | | 42 | VOC | Volatile Organic Compound | | | | | Arthur D Little # **Executive Summary** q Investigations of Study Area 59 (Bridge 526) at Fort Devens, Massachusetts, have resulted in the decision that no further studies or remediation are required at this site. Study Area 59 was identified in the Federal Facilities Agreement between the U. S. Environmental Protection Agency and the U.S. Department of Defense as a potential site of contamination. Fort Devens was placed on the National Priorities List under the Comprehensive Environmental Response, Compensation and Liability Act as amended by the Superfund Amendments and Reauthorization Act on December, 21, 1989. In addition, under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens was selected for cessation of operations and closure. In accordance with these acts and to support the overall mission of environmental restoration and base closure, numerous studies have been conducted that address study areas at Fort Devens, including a Master Environmental Plan (Argonne National Laboratory, 1992), an Enhanced Preliminary Assessment (Weston, 1992), and Site Investigation Reports (ABB, 1992 and Arthur D. Little, 1993a). The Site Investigation of Study Area 59 was completed in 1993 in conjunction with 12 other study areas as part of the Main Post Site Investigation. SA-59 is located at Bridge 526, part of Lovell Street as the road passes over Pond Brook (also known as Tail Race Brook). The brook discharges into the Nashua River approximately 700 feet southeast of the bridge. The study area consists of a two-lane bridge on Lovell Road, which crosses Pond Brook, and that portion of Pond Brook potentially impacted by sandblasting and release of sandblast grit. The bridge was identified as a study area in the Enhanced Preliminary Assessment (Weston, 1992), but was not listed in the Master Environmental Plan (Argonne National Laboratory, 1992). According to the Enhanced PA, the bridge was sandblasted and repainted during the late summer of 1990. Analysis of one sample of the grit produced by the sandblasting indicated a concentration of 1,275 μ g/g of lead. To avoid discharge of the grit into the river, the contractor used a spent sandblast grit containment system during surface preparation and drummed the resulting waste. However, as a result of heavy rain and a possible discharge from the Lake Shirley Dam, the water level rose considerably and washed out the scaffolding and grit containment system. The Fort Devens Environmental Management Office (EMO) inspected the site and found sandblast grit on the stream banks, and on the bridge beams and abutments. The Enhanced PA reports that 10 soil samples collected by the EMO along the stream bank showed lead concentrations between 3.6 and 90 μ g/g, with an average of about 32 μ g/g. Documentation of the actual sample locations was not available. # **Executive Summary** The scope of work for the site investigation was limited to review of records and evaluation of surface water and sediment samples collected from adjacent locations. Sediment and surface water samples were collected upstream of the bridge in Pond Brook and downstream of the bridge in the Nashua River, immediately downstream of the confluence of Pond Brook and the river. This data was used to evaluate the potential impact of sandblast grit released from the bridge to surface water and sediments. Stream bank sediments collected by EMO indicated lead concentrations comparable to existing risk-based sediment criteria for lead. There is some potential for sandblast grit to migrate downstream in Pond Brook and to the Nashua River. However, results of Nashua River sediment sampling performed during the SI do not indicate that lead contamination from the study area has had a discernible impact on the River. On the basis of findings at SA-59, there is no evidence or reason to conclude that the historic release of sandblast grit at SA-59 has caused significant environmental contamination or poses a threat to human health or the environment. The decision has been made to remove SA-59 from further consideration in the Installation Restoration Program (IRP) process. #### 1.0 Introduction 1 2 3 This decision document has been prepared to support a No Further Action decision at Study Area (SA) 59 - Bridge 526 at Fort Devens, Massachusetts. The report was prepared as part of the U.S. Department of Defense (DOD) Base Realignment and Closure (BRAC) program to assess the nature and extent of contamination associated with site operations at Fort Devens. Under Public Law 101-510, the Defense Base Realignment and Closure Act of 1990, Fort Devens has been selected for cessation of operations and closure. An important aspect of BRAC actions is to determine environmental restoration requirements before property transfer can be considered. Studies at SA-59 were conducted to support this overall mission. In conjunction with the Army's Installation Restoration Program (IRP), Fort Devens and the U.S. Army Environmental Center (USAEC; formerly the U.S. Army Toxic and Hazardous Materials Agency) initiated a Master Environmental Plan (MEP) in 1988. The MEP consists of assessments of the environmental status of SAs, specifies necessary investigations, and provides recommendations for response actions with the objective of identifying priorities for environmental restoration at Fort Devens. On December 21, 1989, Fort Devens was placed on the National Priorities List (NPL) under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) as amended by the Superfund Amendments and Reauthorization Act (SARA). An Enhanced Preliminary Assessment (PA) (Weston, 1992a) was also performed at Fort Devens to address areas not normally included in the CERCLA process, but requiring review prior to closure. A final version of the PA report (Weston, 1992b) was completed in April 1992. SA-59 was identified as a potential source of contamination in the PA. In 1992, DOD, through USAEC, also initiated a Site Investigation (SI) of SA-59 along with twelve other SAs as part of the Main Post Site Investigation at Fort Devens. The SI Report (Arthur D. Little, Inc. 1993), recommended No Further Action at SA-59. #### 2.0 Background and Physical Setting # 2.1 Fort Devens Description and Land Use Fort Devens is located in Middlesex and Worcester Counties, Massachusetts, approximately 35 miles west of Boston, Massachusetts. Fort Devens is located in portions of four towns - Ayer, Harvard, Lancaster, and Shirley. Fort Devens currently covers approximately 9,280 acres, consisting of the Main Post, North Post, and South Post areas. Massachusetts Highway Route 2 crosses Fort Devens and separates the Main Post from the South Post (Figure 2-1). The majority of the facilities at Fort Devens lie within the Main Post, located north of Massachusetts Highway Route 2. The Main Post provides all of the on-post housing, including over 1,700 family units and 9,800 bachelor units (barracks and unaccompanied officers' quarters). Other facilities on the Main Post include community services (e.g., the shoppette, cafeteria, post exchange, bowling alley, golf course, and hospital), administrative buildings, classroom and training facilities, maintenance facilities, and ammunition storage. The South Post is located south of Route 2 and contains training areas, ranges, and a drop zone. The North Post abuts the Main Post to the north of West Main Street in Ayer. The principal activities on the North Post are the Waste Water Treatment Plant and the Moore Army Airfield. The terrain surrounding Fort Devens includes rolling areas and wooded hills. Fort Devens is located in the Nashua River Basin, and approximately 8 miles of the river, running from south to north, lie within the reservation boundaries (Figure 2-1). Several lakes and ponds are located within Fort Devens. Land surface elevations within Fort Devens range from about 200 feet above mean sea level (MSL) along the Nashua River on the northern boundary to 450 feet above MSL in the southern portion of the installation. The surrounding towns (Ayer, Harvard, Shirley, and Lancaster) are zoned for residential, commercial, and limited industrial development. All have fewer than 10,000 residents, except Harvard, which has an estimated 13,000. # 2.2 Regional Geology The surficial geology throughout most of Fort Devens is characterized by glacially derived unconsolidated sediments. A mantle of Pleistocene-age glacial till, outwash, and lacustrine (lake) deposits, ranging in thickness from a few inches to approximately 100 feet, blanket the irregular bedrock surface underlying Fort Devens. The glacial lake deposits consist chiefly of sand and gravely sand. Post-glacial deposits consist mostly of river-terrace sands and gravels; fine alluvial sands and silts beneath modern floodplains; and muck, peat, silt, and sand in swampy areas. # 2.0 Background and Physical Setting The surficial deposits are underlain by a complex assemblage of intensely folded and faulted metasedimentary rocks with occasional igneous intrusions. Bedrock occurs at depths of approximately 100 feet to ground surface where it outcrops at Shepley's Hill. Bedrock is typically unweathered to only slightly weathered at Fort Devens, as is typical in glacial terrain. 1 2 3 5 #### 2.3 Regional Hydrogeology 8 9 10 11 12 13 14 15 16 Fort Devens lies within the Nashua River drainage basin. The Nashua River flows south to north through the installation, and is the eventual discharge locus for all surface water and ground water flow at the installation. The water of the Nashua River has been assigned to Class B under Commonwealth of Massachusetts regulations. Class B surface water is "designated for the uses of protection and propagation of fish, other aquatic life and wildlife, and for primary and secondary contact recreation" (314 CMR 4.03). The Nashua River and its major tributaries are shown on Figure 2-1. 17 18 19 20 21 22 23 24 25 26 27 Glacial outwash deposits constitute the primary aquifer at Fort Devens. Ground water also occurs in the underlying bedrock; however, flow is limited because the rocks have no primary porosity and water moves only in fractures and dissolution voids. Ground water in the surficial aquifer at Fort Devens has been assigned to Class I under Commonwealth of Massachusetts regulations. Class I consists of ground waters that are "found in the saturated zone of unconsolidated deposits or consolidated rock and bedrock and are designated as a source of potable water supply" (314 CMR 6.03). Ground water provides the main source of potable water for Fort Devens. Ground water is pumped from three large-diameter and 74 small-diameter production wells. 28 29 30 # 2.4 Study Area Description and History 31 32 33 34 # 2.4.1 Study Area Description and Land Use SA-59 is located at Bridge 526, part of Lovell Street as the road passes over Pond Brook (also known as Tail Race Brook). The brook discharges into the Nashua River 35 approximately 700 feet southeast of the bridge (Figure 2-2). 36 37 38 39 The study area consists of a two-lane bridge on Lovell Road, which crosses Pond Brook, and that portion of Pond Brook potentially impacted by sandblasting and release of sandblast grit. 40 41 42 43 44 45 46 #### 2.4.2 Related Investigations and Site History The bridge was identified as a study area in the Enhanced Preliminary Assessment (Weston, 1992b), but was not listed in the Master Environmental Plan (Argonne National Laboratory, 1992). According to the Enhanced PA, the bridge was sandblasted and repainted during the late summer of 1990. Analysis of one sample of # 2.0 Background and Physical Setting the grit produced by the sandblasting indicated a concentration of 1,275 μ g/g of lead. To avoid discharge of the grit into the river, the contractor used a spent sandblast grit containment system during surface preparation and drummed the resulting waste. However, as a result of heavy rain and a possible discharge from the Lake Shirley Dam, the water level rose considerably and washed out the scaffolding and grit containment system. The Fort Devens Environmental Management Office (EMO) inspected the site and found sandblast grit on the stream banks, and on the bridge beams and abutments. The Enhanced PA reports that 10 soil samples collected by the EMO along the stream bank showed lead concentrations between 3.6 and 90 μ g/g, with an average of about 32 μ g/g. Documentation of the actual sample locations was not available. # 2.4.3 Geology of Study Area SA-59 Pond Brook is located at an elevation of approximately 220 feet above MSL. The grade change on both sides of the brook is approximately 50 feet, resulting in steep banks. The geologic deposits south of the brook in the vicinity of SA-51 are thought to be kame deposits. The drainage channel itself is likely underlain by alluvial deposits. # 2.4.4 Hydrogeology of Study Area SA-59 Pond Brook flows eastward from Phoenix Pond into the Nashua River, located approximately 700 feet to the east. The brook is at an approximate elevation of 220 feet above MSL. # 3.0 Site Investigation # # ### # # # 3.1 Site Investigation Report The scope of work for the site investigation was limited to review of records and evaluation of surface water and sediment samples collected from adjacent locations. Sediment and surface water samples were collected upstream of the bridge in Pond Brook and downstream of the bridge in the Nashua River, immediately downstream of the confluence of Pond Brook and the river. This data will be used to evaluate the potential impact of sandblast grit released from the bridge to surface water and sediments. The Final SI report (Arthur D. Little, 1993), presents documentation of methods and activities performed during the Main Post SI and discusses the results of the SI, including conclusions and recommendations for each study area. The SI Report also incorporates responses to comments received on the SI Data Package. The SI Report recommends No Further Action SA-59. # 3.2 Preliminary Risk Evaluation The criteria and guidelines used for screening risks in the preliminary risk evaluation (PRE) are described below. A complete summary of criteria and guideline values used in the Main Post SI PREs is presented in the Main Post SI Report. Uncertainties associated with the risk evaluation methodologies are also discussed in the SI Report. #### 3.2.1 Human Health Risk Evaluation Methodology ## 3.2.1.1 Soil Risk Evaluation Methodology EPA Region III Risk-Based Concentration Table. EPA Region III has developed risk-based soil concentrations based on published reference doses and cancer potency slopes and "standard" exposure scenarios. The concentrations reported correspond to a hazard quotient of 1, indicating no risk of noncarcinogenic effects, or a lifetime cancer risk of one in 1 million, whichever is lower. Both residential and commercial/industrial health-protective soil guidelines are published by EPA Region III. Massachusetts Contingency Plan (MCP), July 1, 1993. Categories of health-protective soil guidelines were established by the Massachusetts Department of Environmental Protection (MADEP, 1993) for use in the characterization of risk posed by disposal sites. For assumed future residential use, study area concentrations are compared to the Method 1 GW-1/S-1 category. The S-1 category indicates that the soil is accessible and that both child and adult frequency or intensity of use may be high. The GW-1 category additionally assumes the potential use of the ground water as a drinking water source. For assumed future commercial/industrial use, study area soil concentrations are compared to the GW-1/S-2 category. The S-2 category indicates high adult use of the area, and minimal use of the area by children. For chemicals with no soil guidelines, we have used reportable concentrations published in the MCP guidelines. It should be noted that although Method 1 standards are used for screening purposes in the PRE, Method 1 is strictly applicable to a disposal site if there is a standard for each oil and hazardous material of concern, and if the oil or hazardous material is present in and will foreseeably migrate only within ground water and soil. 5 6 7 1 2 # 3.2.2 Ecological Risk Evaluation Methodology 8 10 11 12 # 3.2.2.1 Soil Risk Evaluation Methodology 13 14 15 16 17 18 19 20 21 22 23 24 33 34 35 36 37 38 39 40 41 42 43 44 45 Surface Soil Ecological Protective Contaminant Levels. The ecological criteria (protective contaminant levels, PCLs) used for comparison to detected concentrations in soils were derived from the ABB chronic exposure food web model documented in the SI Report for Groups 2 and 7 (ABB, 1992). No state or federal standards or guidelines exist to evaluate potential effects due to the ingestion of food and surface soil by terrestrial organisms. The PCLs estimate the potential dietary exposure for several potential receptor species at Fort Devens, using published bioaccumulation factors (BAFs), dietary profiles, and ingestion rates for the indicator species. These PCLs are assumed to protect the most sensitive of the modeled indicator species (i.e., short-tailed shrew) from direct toxic effects and/or bioaccumulation-mediated toxic effects. 3.2.2.2 Surface Water Risk Evaluation Methodology EPA Ambient Water Quality Criteria (AWQC). AWQC are developed (EPA, 1992) for the protection of aquatic life. The chronic aquatic AWQC are more applicable to the conditions found at Fort Devens, and thus are used in this PRE. AWQC are designed to be protective of most aquatic species in all life stages, and are based on chronic toxicological data for animals and plants, and on residue levels in aquatic organisms. If these criteria are not exceeded, most species of aquatic life would be protected. The chronic AWQC is the contaminant concentration that should not be exceeded by the four-day average chemical concentration more than once every three years. When hardness data are available from the study area, hardness-dependent chronic AWQC (for selected inorganics) are adjusted using an average hardness for the study area. 3.2.2.3 Sediment Risk Evaluation Methodology Detected concentrations of contaminants in sediments are compared to the following two guidelines: the National Oceanographic and Atmospheric Administration (NOAA) Effects Range - Low (NOAA, 1990), and the New York State Department of Environmental Conservation (NYSDEC) Sediment Quality Criteria (NYSDEC, 1989). In addition, sediment concentrations are compared to ecological soil protective contaminant levels (PCLs). The rationale for including surface soil guidelines in these comparisons is that during summer, the sediments in wetlands and along the Nashua River banks may dry out and become exposed. During these dry periods, terrestrial species may be exposed to contaminants in surface soils via the ingestion of earthworms or other invertebrates. ### 3.0 Site Investigation Notional Oceanographic and Atmospheric Administration Effects Range - Low. Noah has collected data on sediment toxic effects levels for various biota from sites throughout the U.S. (Noah, 1990). These data were compiled in order of concentration associated with biological effects, and the lower 10th percentile and median concentrations of the data were identified. The lower 10 percentile of the data is identified as an Effects Range-Low (ER-L), while the median value is termed an Effects Range-Median (ER-M). study area sediment data are compared to ER-L sediment toxicity values; this is a conservative approach, which is appropriate for this screening level risk assessment. New York State Department of Environmental Conservation Sediment Quality Criteria. For organic compounds, the NYSDEC Sediment Quality Criteria (NYSDEC, 1989) have been calculated using the equilibrium partitioning approach, and use the ambient water quality standard or guidance value for each chemical. This approach is based on the theory that toxics in sediments will exert their effect to the extent that the chemical becomes freely bioavailable in the sediment interstitial water. The bioavailability of non-polar organics in sediments is based on the fraction of organic carbon in the sediment (the sediment/organic carbon partition coefficients, or K_{oc}). Since the octanol/water partition coefficient (K_{ow}) is nearly equal to the sediment/organic carbon partition coefficient, the K_{ow} was used by NYSDEC in the calculation. To derive a sediment criterion for a specific sediment, the NYSDEC Sediment Quality Criterion is multiplied by the average of the organic carbon content values in sediments for each study area. For inorganics, the NYSDEC criteria are based on a geometric mean of a no-effect and lowest effect level for benthic organisms to derive sediment criteria. #### 4.0 Contamination Assessment # 4.1 Sediment Sampling Evaluation Evaluation of lead concentrations in sediments collected during the Main Post SI from the immediate vicinity of SA-59, both upstream and downstream of Bridge 526 (Figure 4-1) indicate that lead concentrations are significantly higher in the downstream Nashua River locations NRD-93-09X and NRD-93-10X (240 and 61 μg/g respectively) when compared with the upstream Pond Brook location NRD-93-01X (12.9 μg/g). The lead concentration of 12 μg/g at the downstream Nashua River location NRD-93-08X is comparable to the upstream Pond Brook location. When a comparison of lead concentrations at locations NRD-93-08X, 09X, and 10X is made with locations both upstream and downstream in the Nashua River as part of other investigations during the Main Post SI, higher lead concentrations are found in both directions (i.e., $1,400~\mu g/g$ at the farthest upstream location NRD-93-06X and 760 $\mu g/g$ at the farthest downstream location, NRD-93-13X (see Main Post SI Report, Arthur D. Little, 1993). Therefore, there is no indication from the Nashua River sampling data that lead contamination derived from SA-59 has had a negative impact on the Nashua River. # 4.2 Surface Water Sampling Evaluation No lead concentrations were detected in either the upstream surface water location NRW-93-01X or the downstream surface water location NRW-93-08X. #### 5.0 Preliminary Risk Evaluation 1 2 # 5.1 Risk Evaluation of Study Area SA-59 The Enhanced PA (Weston, 1992b) reports that 10 soil samples collected by the EMO along the stream bank showed lead concentrations between 3.6 and 90 μ g/g, with an average of about 32 μ g/g. The average concentration does not significantly exceed the NYSDEC sediment criteria of 27 μ g/g or the NOAA Effects Range-Low level of 35 μ g/g. The maximum concentration is approximately threefold higher than the criteria, but is within one order of magnitude of the criteria. Furthermore, the results of sampling and analysis of Pond Brook and Nashua River sediments performed during the SI do not indicate that lead contamination derived from SA-59 has had a negative impact on the Nashua River. Surface water of the Nashua River exceeded AWQC only for phosphorous and alkalinity, whereas Pond Brook showed an exceedence of the AWQC only for alkalinity. Nashua River sediments in this area exceeded the NOAA sediment guidelines for five polynuclear aromatic hydrocarbons, four pesticides, seven inorganic compounds, and TPHC, as well as the NYSDEC sediment criteria for bis(2-ethylhexyl)phthalate, four pesticides, and nine inorganics. Pond Brook sediments, collected upstream of Bridge No. 526, exceeded the NOAA ER-L for DDE and mercury, and exceeded the NYSDEC criteria for arsenic, chromium, manganese, and mercury. Although these exceedances pose some ecological risk to benthic biota of both Pond Brook and the Nashua River, no obvious effects of Pond Brook, Bridge 526, or other portions of SA-59 can be discerned as having occurred to the Nashua River, since the observed range of contaminants in the river sediments is inclusive of the levels detected in Pond Brook. #### 6.0 Conclusions No further action is recommended at SA-59. This recommendation is based on the historical information regarding the use of the site, historical sampling data, visual observations, and the results of sampling and analysis. Stream bank sediments collected by EMO indicated lead concentrations comparable to existing risk-based sediment criteria for lead. There is some potential for sandblast grit to migrate downstream in Pond Brook and to the Nashua River. However, results of Nashua River sediment sampling performed during the SI do not indicate that lead contamination from the Study Area has had a discernible impact on the River. #### 7.0 Decision On the basis of findings at SA-59, there is no evidence or reason to conclude that the historic release of sandblast grit at SA-59 has caused significant environmental contamination or poses a threat to human health or the environment. The decision has been made to remove SA-59 from further consideration in the Installation Restoration Program (IRP) process. In accordance with CERCLA 120(h)(3), all remedial actions necessary have taken place, and the USEPA and MADEP signatures constitute concurrence in accordance with the same. C. CHAMBERS Date BRAC Environmental Coordinator U.S. ENVIRONMENTAL PROTECTION AGENCY JAMES P. BYRME Fort Devens Remedial Project Manager MASSACHUSETTS DEPARTMENT OF ENVIRONMENTAL PROTECTION D. LYNNE WELSH Section Chief, Federal Facilities - CERO 7 Concur [] Non-concur (please provide reasons for non-concurrence in writing) Non-concur (please provide reasons for non-concurrence in writing) #### 8.0 References 2 3 4 5 6 7 8 9 10 12 13 11 16 17 19 20 21 22 23 25 26 27 28 31 32 33 30 36 39 40 43 47 48 14 15 18 24 29 34 35 37 38 41 42 44 45 46 49 Gas Stations. ABB Environmental Services, Inc., 1992. SI Report for Groups 2, 7, and Historic Argonne National Laboratory, April 1992. Master Environmental Plan for Fort Devens, Final. Environmental Assessment and Information Sciences Division. Arthur D. Little, Inc., December 1993a. Final Site Investigation Report, Main Post Site Investigation, Fort Devens, Massachusetts. Arthur D. Little, Inc., April, 1993b. Final Supplemental Work Plan, Main Post Site Investigation, Fort Devens, Massachusetts. Prepared for U.S. Army Environmental Center. Engineering Technologies Associates, Inc., October 1992. Ground Water Flow Model, Technical Support Services for Installation Restoration Program, Draft Final. Massachusetts Department of Environmental Protection (MADEP), July 1993. Revised Massachusetts Contingency Plan (MCP), 310 CMR 40.000 and Amendments to Timely Schedule and Fee Provisions 310 CMR 4.00. National Oceanic and Atmospheric Administration (NOAA), 1990. The Potential for Biological Effects of Sediment-Sorbed Contaminants Tested in the National Status and Trends Program. NOAA Technical Memorandum NOS OMA 52. New York State Department of Environmental Conservation (NYSDEC), 1989. Sediment Criteria. Used as Guidance by the Bureau of Environmental Protection, Division of Fish and Wildlife. Potomac Research Inc., February, 1993. Users Manual, IRDMIS PC Data Entry and Validation Subsystem, Version 5.0. Roy F. Weston, Inc., February 1992^a. Enhanced Preliminary Assessment - Delivery Order 9, Regulatory Draft. Roy F. Weston, Inc., April 1992^b. Enhanced Preliminary Assessment - Delivery Order 9, Final. U.S. Environmental Protection Agency (EPA) Region III, May 10, 1993. EPA Region III Risk-Based Concentration Table (Second Quarter, 1993). U.S. Environmental Protection Agency (EPA), December 1992. Ambient Water Quality Criteria. # Table 4-1 Fort Devens Main Post Site Investigation Study Area 59 - Analytes in Sediments | Site ID | TOC-Adjusted | NOAA | | Fort Devene | Devene NRD-93-08X | | Ž | NRD-83-09X | | | NRD-93-10X | ×o | | | NRD. | NRD-93-01X | | | |-------------------------------------------------------------------|----------------|-------------|--------------------------------------------|--------------------|---------------------|---------|-----|---------------------|----------------|-------|---------------------|------------|----------|----------|------------------|--------------------|--------|---| | Semple Depth (ft) | Bediment Crit. | Criteria | Sediment Surface Soil
Criteria Criteria | Soff
Background | ALXSD06C
0 - 0.5 | | V 0 | ALXSDOGE
0 - 0.5 | | | ALXSDO6W
0 - 0.5 | * | | | ALXSD
0 - 0.5 | ALXSD01X
0-0.5 | | | | Votatie Organic Compounda (ug/g)
Aromatica
Toluene | ŧ | í | 1800 | | 0.25 | , | | 1.6 | | | | 0.58 | | | | 0.1 LT | | | | Semivolatile Organic Compounds (ug/g) | Phthalates
Di-N-butyl phthalate
Bis (2-ethythexyl)phthalate | 4.788 | 1 1 | 2850 | | 1.3 LT . | | | 1.3 LT
18 | ځ | | | 4.1
8.4 | ž | | | 1.3 LT
0.48 LT | | | | Polynuclear Aromatics | Acenephthylene
Phenenthene | , 9 | 1 2 | 2800 | • | 0.033 LT | • | • | 7 (| | • | | 0.65 | | • | • | 0.033 LT | | | | Fluoranthene | ß : | 0.6 | 5 5 | | 0.032 LT | | | g. 2 | ž ž | NOAA. | | 68.0 | Y YOU | NOAA. | | 0.33 | NOAA. | | | Pyrene | ı | 0.35 | 220 | | 0.083 LT | • | • | 3.6 | ž | NOAA | | 8. | NOAA | | | 0.31 | | | | Benzo (a) Anthracene | ı | 0.23 | 8:9 | | 0.041 LT | | • | 9.1 | ¥ | NOAA. | _ | 0.62 | 2 | NOAA. | • | 0.16 | | • | | Chrysene | 1 | 7 .0 | 24 | | 0.032 LT | • | • | 2.7 | ž | NOAA. | | Ξ | - NOAA | `.
'≰ | | 0.19 | | | | Benzo (b) Fluoranthene | ı | 1 | 8 | | 0.31 LT . | | • | 17 | | | | 0.31 LT | | | • | 0.31 LT | | | | Benzo (k) Fluoranthene | ŧ | t | Š | | 0.13 LT . | • | | 0.13 LT | | | | 0.87 | | | • | 0.13 LT | | • | | Pesticides/Herbicides/PCBs (ug/g) | Urganochiorne Pesticides
Endoaultan I | 0.000 | ; | 11 | | 1000 | | | č | 3 | | | į | 3 | | | | | | | Endosettan | 0.0012 | : : | 1 1 | | | | | 50.0 | <u>.</u> | | | 0.003 | ž. | | • | 0.001 | | | | Dieldrin | 0.78 | 0.00002 | : | | 0.002 LT | NOAA | • | 0.018 | | AACM | · · | 200 | | | | 1 200 | | | | Heptachlor | 0.0012 | 1 | 9.0 | | 0.002 LT NY | | • | 8000 | | | | 0000 | }
} | · · | | 0.000 | 2 | | | Heptachlor Epoxide | 0.0012 | 1 | ĭ | | 0.001 LT | | • | 0.014 | ž | | | 1000 | | | | 1 1000
T 1 1000 | | | | 0004'4 | : | 0.002 | 1.07 | | 0.003 LT . | NOAA | • | 0.031 | ž | NOAA. | | 0.07 | | NOAA. | | 0.053 | A A CN | | | p.p'-DDE | ~ | 0.002 | 1.07 | | | NOAA, | • | 0.014 | ¥ | NOAA. | _ | 0.007 | 2 | NOAA. | | 0.007 | NOAA. | | | p.p00T | ı | 0.00 | 1.07 | | 0.004 LT | NOAA, | • | 0.037 | ž | NOAA. | · | 0.115 | ₽ | NOAA. | • | 0.113 | - NOAA | • | | Explosives (ug/g)
not detected or below detection limit | | | | ******* | | | | | | | | | | | | | | | | Total Petroleum Hydrocerbons (ug/g) | i | 4 | i | 1 | 10 LT . | · NOAA. | , | 370 | ž | NOAA, | • | 8 | 9 | NOAA, - | • | 10 LT | · NOAA | | | | | | | | | | _ | | | | | | | | _ | | | | LT = Less than detection limit ND = Not detected B = Above background soil concentrations NOA = Above NOA sed, crit. E = above suface soil eco. crit. NY = above NY sed, crit. TOC = 4% Fort Devens Mein Post Site Investigation Study Area 59 - Analytes In Sediments Table 4-1 Page 2 of 2 | Site ID | TOC-Adjusted | NOAA | Ecological | Fort Devene | NRD-93-08X | | | Ž | 1D-93-09X | | | | NRD-93-10X | | | | Ž | NRD-93-01X | | | | _ | |-------------------|-----------------------------|-----------|-----------------------|-------------|-------------|-----|---------|--------------|-----------|---|-------|------------|------------|-----------|-----------|--------|--------------|------------|--------|-----------|----|---| | Field Sample ID | NYSDEC | Sediment | Sediment Surface Soll | | ALXSD06C | | | <u>¥</u> | ALXSD06E | | | | ALXSDOGW | | | | ¥ | ALXSD01X | | | | | | Sample Depth (ft) | Sediment Crit. Criteria | Criteria | Criteria | Background | 0 - 0.5 | | | <u>.</u> | 0.0.5 | | | | 0 - 0.5 | | | | <u>.</u> | 0.0.5 | | | | | | Metals (ug/g) | Metals not adjusted for TOC | d for TOC | | | | | | - | | | | | | | | | H | | | | | _ | | Aluminum | ŧ | · | 1700 | 15000 | 4020 | | ш | • | 21200 | | | 8 | 721 | | • | m | • | 6640 | | | ш | _ | | Arsenic | ĸ | 8 | ន | 2 | 9.36 | ₹ | • | • | 17.9 | ₹ | | • | ő | × | | ٠ | • | 7.34 | ž | | | _ | | Barium | : | ı | Ę | 42.5 | 18.7 | | | • | 252 | • | | В | .73 | _ | | ш | 62 | 24.8 | • | | | _ | | Cadmium | 8.0 | 60 | 77.0 | ~ | 1.2 LT | ž | ш
, | • | 37.5 | ž | NOAA. | 8 | 7.2 | Z | | ¥
m | 8 | 1.2 | LT NY. | | ш. | _ | | Calcium | 1 | 0 | 1 | 84 | 387 | | • | • | 3160 | • | | 60 | 169 | | | ٠ | 8 | 1510 | • | | | | | Chromium | 8 | & | 5 | 3 | 10.6 | | | • | 168 | ž | NOAA. | | 38 | z | | • | 8 | 65.2 | Ĕ. | | | | | Cobalt | 1 | ı | 8 | 1 | 2.5 LT | | | • | 11.7 | | | • | 6 | 5 1.7 | | • | • | 2.5 | | | | _ | | Copper | 19 | 2 | 8 | 8.38 | 8.02 | | | • | 279 | ž | NOAA. | ш
80 | 9 8 | Z | | ш | 60 | 9.05 | | | | | | lron | : | 1 | : | 15000 | 6820 | | | • | 28900 | | | 66 | 116 | 0 | | • | • | 12700 | | | | _ | | Lead | 22 | 35 | 4 | 48.4 | 12 | | | • | 240 | ₹ | NOAA, | 6 0 | • | <i>z</i> | | ¥ | 6 | 12.9 | | | ш | - | | Magnesium | ı | : | ı | 2800 | 180 | | • | • | 3580 | | | | 158 | 6 | | ٠ | - | 3160 | | | | | | Manganese | 428 | , | 1500 | 300 | 90.4 | | | • | 624 | ž | | | 8 | æ | | ٠ | - | 163 | | • | | _ | | Mercury | 0.11 | 0.15 | 3.6 | 0.22 | 0.159 | ¥.¥ | . NOAA. | • |
 | ž | NOAA. | 6 0 | - | 1.13
N | NY. NOAA. | ٠
ځ | 8 | 0.444 | | NY, NOAA, | | _ | | Nickel | 8 | 8 | 8 | 2 | 4.58 | | | • | 28.4 | ž | | | 6.3 | 80 | | • | • | 11.5 | | | | | | Potassium | ı | : | 1 | 1700 | 433 | | | . | 1890 | • | | 60 | - | 0 | | • | • | 462 | | | | _ | | Selenium | ı | ı | 0.48 | ı | 0.449 LT | | | • | 1.67 | • | • | ш | 0.44 | 9 LT | | • | • | 5 | | | ш | | | Silver | , | - | 22 | 980.0 | 0.803 LT | | | 60 | 13.4 | • | NOAA | | 2.5 | • | ĝ | ≴ | 8 | 3.24 | | NOAA, | | | | Sodium | 1 | ı | , | 131 | 38.7 LT | | | • | <u>‡</u> | • | | | = | | | • | - | 72.1 | | | | _ | | Ē | ı | 1 | 1 | 1 | 7.43 LT | | | • | 74.6 | | | | 7.4 | | | • | • | 7.43 | 5 | | | - | | Vanadium | ı | 1 | 5 | 28.7 | 5.57 | | | • | 39.4 | | | ш
89 | = | | • | ш | • | 11.7 | • | • | w | | | Zinc | 82 | 5 | 95 | 35.5 | 30.5 | | | • | 534 | ž | NOAA, | | = | | ·
≻ | • | 80 | 54.6 | ٠ | | | _ | | | | | | | | | | | | | | | | | | | _ | | | | | _ | Notes: LT = Less than detection limit ND = Not detected B = Above background soil concentrations NOA = Above NOA sed, crit. E = above suttace soil eco. crit. NY = above NY sed, crit. **TOC = 4%